Cart (Loading....) | Create Account
Close category search window
 

Iterative Frequency Domain Joint-over-Antenna Detection in Multiuser MIMO

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

4 Author(s)

Multiuser multiple-input-multiple-output (MIMO) wireless systems have great potential in improving information rate, diversity and resistance to against interference. The primary objective of this paper is to derive for broadband signaling a new iterative frequency domain (FD) multiuser MIMO signal detection technique for joint-over-antenna (JA) detection. The proposed detector is based on soft-cancellation and minimum mean square error (MMSE) filtering, followed by maximum a posteriori probability (MAP) detector to detect several of each users transmit antennas. The purpose of jointly detecting several transmit antennas is to preserve the degrees of freedom (DoF) for MMSE. Computational complexities with FD and its time domain (TD) counterpart are evaluated in this paper, and it is shown that FD requires significantly lower complexity than TD. Numerical results show that JA significantly outperforms the receiver that detects transmit antenna signals antenna-by- antenna (AA). The proposed iterative FD JA technique achieves larger performance gains compared to AA when the total number of transmit antennas is larger than the number of receiver antennas, as well as in the presence of spatial correlation.

Published in:

Wireless Communications, IEEE Transactions on  (Volume:6 ,  Issue: 10 )

Date of Publication:

October 2007

Need Help?


IEEE Advancing Technology for Humanity About IEEE Xplore | Contact | Help | Terms of Use | Nondiscrimination Policy | Site Map | Privacy & Opting Out of Cookies

A not-for-profit organization, IEEE is the world's largest professional association for the advancement of technology.
© Copyright 2014 IEEE - All rights reserved. Use of this web site signifies your agreement to the terms and conditions.