Cart (Loading....) | Create Account
Close category search window
 

Robust Downlink Beamforming Based on Outage Probability Specifications

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

4 Author(s)
Chalise, B.K. ; Univ. Catholique de Louvain, Louvain La Neuve ; ShahbazPanahi, S. ; Czylwik, A. ; Gershman, A.B.

A new approach to multi-antenna downlink beam- forming is proposed that provides an improved robustness against uncertainty in the downlink channel covariance matrices caused by errors between the actual and estimated channel values. The proposed method uses the knowledge of the statistical distribution of such a covariance uncertainty to minimize the total downlink transmit power under the constraint that the outage probability does not exceed a certain threshold value. Although our approach initially leads to a non-convex optimization problem, it can be reformulated in a convex form using the semidefinite relaxation technique. The resulting convex optimization problem can be solved efficiently using the well-established interior point methods. Computer simulations verify performance improvements of the proposed technique as compared to the robust transmit beamforming method based on the worst-case performance optimization with judicious selection of the upper bounds on channel covariance errors.

Published in:

Wireless Communications, IEEE Transactions on  (Volume:6 ,  Issue: 10 )

Date of Publication:

October 2007

Need Help?


IEEE Advancing Technology for Humanity About IEEE Xplore | Contact | Help | Terms of Use | Nondiscrimination Policy | Site Map | Privacy & Opting Out of Cookies

A not-for-profit organization, IEEE is the world's largest professional association for the advancement of technology.
© Copyright 2014 IEEE - All rights reserved. Use of this web site signifies your agreement to the terms and conditions.