By Topic

Lyapunov-Based Tracking Control in the Presence of Uncertain Nonlinear Parameterizable Friction

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

4 Author(s)
Makkar, C. ; Univ. of Florida, Gainesville ; Hu, G. ; Sawyer, W.G. ; Dixon, W.E.

Modeling and compensation for friction effects has been a topic of considerable mainstream interest in motion control research. This interest is spawned from the fact that modeling nonlinear friction effects is a theoretically challenging problem, and compensating for the effects of friction in a controller has practical ramifications. If the friction effects in the system can be accurately modeled, there is an improved potential to design controllers that can cancel the effects; whereas, excessive steady-state tracking errors, oscillations, and limit cycles can result from controllers that do not accurately compensate for friction. A tracking controller is developed in this paper for a general Euler-Lagrange system that contains a new continuously differentiable friction model with uncertain nonlinear parameterizable terms. To achieve the semi-global asymptotic tracking result, a recently developed integral feedback compensation strategy is used to identify the friction effects online, assuming exact model knowledge of the remaining dynamics. A Lyapunov-based stability analysis is provided to conclude the tracking and friction identification results. Experimental results illustrate the tracking and friction identification performance of the developed controller.

Published in:

Automatic Control, IEEE Transactions on  (Volume:52 ,  Issue: 10 )