By Topic

Hydrodynamic Simulations of Unitraveling-Carrier Photodiodes

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

6 Author(s)
Rahman, S.M.M. ; Chalmers Univ. of Technol., Goteborg ; Hjelmgren, H. ; Vukusic, J. ; Stake, J.
more authors

We present simulated results of a unitraveling-carrier photodiode (UTC-PD) using the hydrodynamic carrier transportation model. A maximum responsivity of 0.25 A/W and a small-signal 3-dB bandwidth of 52 GHz were obtained for a 220-nm-thick InGaAs absorption layer. The physical properties of the UTC-PD have been investigated at different optical injection levels. Modulation of the energy-band profile due to the space charge effect has been observed at high injection level, and an electron velocity overshoot of 3 x 107 cm/s has been found to effectively delay the onset of space charge effects. Comparisons with reported simulated results using the drift-diffusion model as well as reported experimental results are presented. The results suggest the necessity of using the hydrodynamic transport equations to accurately model the UTC-PD. In addition, it has been corroborated that the photoresponse of the UTC-PD could be improved by incorporating a graded doping profile in the absorption layer.

Published in:

Quantum Electronics, IEEE Journal of  (Volume:43 ,  Issue: 11 )