By Topic

An Online Dynamic Security Assessment Scheme Using Phasor Measurements and Decision Trees

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

5 Author(s)
Kai Sun ; Arizona State Univ., Tempe ; Likhate, S. ; Vittal, V. ; Kolluri, V.S.
more authors

This paper describes an online dynamic security assessment scheme for large-scale interconnected power systems using phasor measurements and decision trees. The scheme builds and periodically updates decision trees offline to decide critical attributes as security indicators. Decision trees provide online security assessment and preventive control guidelines based on real-time measurements of the indicators from phasor measurement units. The scheme uses a new classification method involving each whole path of a decision tree instead of only classification results at terminal nodes to provide more reliable security assessment results for changes in system conditions. The approaches developed are tested on a 2100-bus, 2600-line, 240-generator operational model of the Entergy system. The test results demonstrate that the proposed scheme is able to identify key security indicators and give reliable and accurate online dynamic security predictions.

Published in:

Power Systems, IEEE Transactions on  (Volume:22 ,  Issue: 4 )