By Topic

Parameter Identification of T-S Fuzzy Models Based on Particle Swarm Optimization Algorithms

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

4 Author(s)
Ding Yuan ; Harbin Inst. of Technol., Harbin ; Gao Xiaozhi ; Huang Xianlin ; Yin Hang

Most of the T-S fuzzy models commonly used in the identification of nonlinear processes have linear or affine consequents. More specifically, the local mathematical models in the consequents of fuzzy rules are taken to be linear or affine. However, it can always be observed that the number of fuzzy rules of the resultant T-S fuzzy models is very large. In order to reduce the number of fuzzy rules and keep the model accuracy unchanged, a special class of T-S fuzzy models is taken to be the candidate models in this study. In more detail, the consequent of the fuzzy rule in this research is polynomial models instead of linear or affine ones. Based on this candidate T-S fuzzy model, the particle swarm optimization algorithms are employed to estimate the parameters in this model. Numerical simulations demonstrate that the number of fuzzy rules is significantly reduced while the model accuracy is still unchanged. This advantage comes to be more prominent with the increase of input variables.

Published in:

Control Conference, 2007. CCC 2007. Chinese

Date of Conference:

July 26 2007-June 31 2007