By Topic

CNN-Based Hybrid-Order Texture Segregation as Early Vision Processing and Its Implementation on CNN-UM

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Chin-Teng Lin ; Nat. Chiao-Tung Univ., Hsinchu ; Chao-Hui Huang ; Shi-An Chen

In this paper, a biologically inspired, CNN-based, multi-channel, texture boundary detection technique is presented. The proposed approach is similar to human vision system. The algorithm is simple and straightforward such that it can be implemented on the cellular neural networks (CNNs). CNN contains several important advantages, such as efficient real-time processing capability and feasible very large-scale integration (VLSI) implementation. The proposed algorithm also had been widely tested on synthetic texture images. Those texture images are randomly selected from the Brodatz textures database (1966). According to our simulation results, the boundaries of uniform textures can be detected quite successfully. For the nonuniform or nonregular textures, the results also indicate meaningful properties, and the properties also are consistent to the human visual sensation. The proposed algorithm also has been implemented on the CNN universal machine (CNN-UM), and yields similar results as the simulation on the PC. Based on the efficient performance of CNN-UM, the algorithm becomes very fast.

Published in:

Circuits and Systems I: Regular Papers, IEEE Transactions on  (Volume:54 ,  Issue: 10 )