By Topic

Hybrid Link/Path-Based Design for Translucent Photonic Network Dimensioning

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

5 Author(s)

The advancement of ultralong-haul transmission technology has dramatically enhanced the all-optical reaches. However, the actual situations of installed fiber and sites for terrestrial network often prevent implementing a purely transparent network, and thus, opaque reshaping retiming regenerating (3R) regeneration is required to guarantee optical signal reachability. Since 3R regenerators based on optical/electrical/optical conversion tend to dominate the total network costs, an efficient network design method that allocates a minimum number of 3R regenerators to optimum locations is essential to build a cost-effective photonic network. In this paper, we propose such a network-dimensioning method by combining the advantages of link-based and path-based design approaches. It first guarantees optical signal reachability for any possible traffic demand in each segmented linear link. After combining all the links, excessive regenerators are eliminated based on the optical signal quality check with -factor calculation for each wavelength path. A trial design of a large-scale mesh network demonstrated a significant cost savings of more than 30% in comparison with a conventional link-based design. In the trial, the impact of fiber loss coefficient over the total network cost was investigated quantitatively, addressing the importance of such quantitative modeling and analysis.

Published in:

Lightwave Technology, Journal of  (Volume:25 ,  Issue: 10 )