By Topic

Single and Multiwavelength All-Optical Clock Recovery in Single-Mode Fiber Using the Temporal Talbot Effect

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Dominik Pudo ; Dept. of Electr. & Comput. Eng., McGill Univ., Montreal, Que., Canada ; Michal Depa ; Lawrence R. Chen

We introduce and demonstrate an all-optical clock recovery scheme for return-to-zero transmission systems based on the buffering property of the temporal Talbot effect. This linear, dispersive, and, in principle, lossless phenomenon allows us to generate a regular pulse train from a pseudorandom (aperiodic) input train. Proof-of-principle operation at one and two simultaneous wavelengths is demonstrated using the single-mode fiber as the dispersive medium to implement the temporal Talbot effect. We examine both the limitations and the tolerance of our approach.

Published in:

Journal of Lightwave Technology  (Volume:25 ,  Issue: 10 )