Cart (Loading....) | Create Account
Close category search window
 

Diffraction Modeling of the Multicore Fiber Amplifier

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

4 Author(s)

The 3-D beam propagation method (BPM) and a complementary mode solver for the passive fiber were applied for modeling fiber amplifiers with a hexagonal structure of evanescently coupled cores that have been recently experimentally realized. The modes and modal gains were calculated for 7- and 19-core systems. Diminishing the core index step from Deltan = 2.57 ldr 10-3 to Deltan = 1.27 ldr 10-3 leads to a reduction of the amount of the guided modes from 7 to 3 and from 19 to 10 for the 7- and 19-core structures, respectively. The in-phase mode that has the lowest small-signal gain for the larger index step turns to have the highest small-signal gain at the lower index step. The mechanism lying behind the observed convergence of the wave field in the laser to the in-phase-like mode was analyzed by a study of propagation of a linear combination of two multicore modes. It was found that evolution of the amplified wave field in gain saturation regime can change from dominance of one to another multicore mode at a small variation of the input wave field. The 3-D BPM modeling shows the shortage of modal approach for analyzing the multicore fiber amplifier and indicates the importance of interference between the competing modes, leading to the beatings in saturated gain.

Published in:

Lightwave Technology, Journal of  (Volume:25 ,  Issue: 10 )

Date of Publication:

Oct. 2007

Need Help?


IEEE Advancing Technology for Humanity About IEEE Xplore | Contact | Help | Terms of Use | Nondiscrimination Policy | Site Map | Privacy & Opting Out of Cookies

A not-for-profit organization, IEEE is the world's largest professional association for the advancement of technology.
© Copyright 2014 IEEE - All rights reserved. Use of this web site signifies your agreement to the terms and conditions.