Cart (Loading....) | Create Account
Close category search window
 

Tunable Diode-Laser Spectroscopy With Wavelength Modulation: A Calibration-Free Approach to the Recovery of Absolute Gas Absorption Line Shapes

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

5 Author(s)

The principles and implementation of an alternative approach to tunable diode-laser spectroscopy with wavelength modulation are described. This new technique uses the inherent phase shift between diode-laser power modulation and frequency modulation to separate the residual amplitude modulation and the first derivative signals recovered at the fundamental modulation frequency. The technique, through analysis of the residual-amplitude-modulation signal, is absolute, yielding gas-absorption-line-shape functions, concentrations, and pressures without the need for calibration under certain defined operating conditions. It offers the simplicity of signal analysis of direct detection while providing all the advantages of phase-sensitive electronic detection. Measurements of the 1650.96-nm rotation/vibration-absorption-line-shape function for 1% and 10% methane in nitrogen at various pressures are compared to theoretical predictions derived from HITRAN data, and the excellent agreement confirms the validity of the new technique. Further measurements of concentration and pressure confirm the efficacy of the technique for determining concentration in industrial-process environments where the pressure may be unknown and changing. An analysis of signal strength demonstrates that sensitivity comparable to that of conventional approaches is achievable. The new approach is simpler and more robust in coping with unknown pressure variations and drift in instrumentation parameters (such as laser characteristics) than the conventional approach. As such, it is better suited to stand-alone instrumentation for online deployment in industrial processes and is particularly useful in high-temperature applications, where the background infrared is strong.

Published in:

Lightwave Technology, Journal of  (Volume:25 ,  Issue: 10 )

Date of Publication:

Oct. 2007

Need Help?


IEEE Advancing Technology for Humanity About IEEE Xplore | Contact | Help | Terms of Use | Nondiscrimination Policy | Site Map | Privacy & Opting Out of Cookies

A not-for-profit organization, IEEE is the world's largest professional association for the advancement of technology.
© Copyright 2014 IEEE - All rights reserved. Use of this web site signifies your agreement to the terms and conditions.