Scheduled System Maintenance on May 29th, 2015:
IEEE Xplore will be upgraded between 11:00 AM and 10:00 PM EDT. During this time there may be intermittent impact on performance. For technical support, please contact us at We apologize for any inconvenience.
By Topic

Code-Empowered Lightwave Networks

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Brès, C.-S. ; Univ. of California-San Diego, La Jolla ; Prucnal, P.R.

In this paper, an architecture for code-empowered optical CDMA (OCDMA) lightwave networks is presented. The architecture is based on reconfigurable optically transparent paths among users of the network to provide high-bandwidth optical connections on demand over small areas such as local area networks or access networks. The network operates on the transmission of incoherent OCDMA codes, each network station being equipped with an OCDMA encoder and decoder. The routing at a network node is based on the OCDMA code itself. The destination address, as well as the next node on the path, is given by the code as in a code-empowered network. A node consists of an OCDMA router built from parallel code converter routers that perform switching, routing, and code conversion. The latter enables a virtual code path for increased scalability. Commonly available delay lines enable the tunability of the encoder, decoder, and router for a reconfigurable and flexible network. Flexibility and granularity are also accentuated by OCDMA encoding. An OCDMA lightwave network can therefore respond to changes in traffic load, traffic conditions, failure, and other network impairments. We describe the possible architectures and the routing constraints of such OCDMA lightwave networks. We present a power analysis and focus on the performance issues of dynamic routing. The effect of coding, topology, load condition, and traffic demand is analyzed using simulations. The obtained results show that the flexibility of OCDMA and the large offered cardinality can be a solution to the needs of local area and access networks.

Published in:

Lightwave Technology, Journal of  (Volume:25 ,  Issue: 10 )