By Topic

Managing Resources and Quality of Service in Heterogeneous Wireless Systems Exploiting Opportunism

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Patil, S. ; Qualcomm Flarion Technol., Bedminster ; de Veciana, G.

We propose a novel class of opportunistic scheduling disciplines to handle mixes of real-time and best-effort traffic at a wireless access point. The objective is to support probabilistic service rate guarantees to real-time sessions while still achieving opportunistic throughput gains across users and traffic types. We are able to show a ldquotightrdquo stochastic lower bound on the service a real-time session would receive assuming that the users possibly heterogeneous capacity variations are known or estimated, and are fast fading across slots. Such bounds are critical to enabling predictable quality of service and thus the development of complementary resource management and admission control strategies. Idealized simulation results show that the scheme can achieve 80%-90% of the maximum system throughput capacity while satisfying the quality of service (QoS) requirements for real-time traffic, and that the degradation in system throughput is slow in the number of real-time users, i.e., inter- and intra-class opportunism are being properly exploited. We note however, that there is a tradeoff between strictness of QoS requirements and the overall system throughput one can achieve. Thus if QoS requirements on real-time traffic are very tight, one would need to simply give priority to real-time traffic, and in the process lose the throughput gains of opportunism.

Published in:

Networking, IEEE/ACM Transactions on  (Volume:15 ,  Issue: 5 )