Cart (Loading....) | Create Account
Close category search window

Computed-Torque Control of an Omnidirectional Mobile Robot

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Vazquez, J.A. ; CINVESTAV-IPN, Mexico City ; Velasco-Villa, M.

The path-tracking problem of a wheeled omnidirectional mobile robot is addressed in this work. Instead of the classical kinematics model based control commonly considered, the analysis of the problem is based on the dynamic model of the vehicle. Borrowed from the rigid robot manipulator literature, the well known computed torque control strategy is applied to the case of a mobile robot of the type (3,0). It is shown that the considered strategy solves the problem assuring the closed loop stability of the system when the state is available for measurement, allowing in this way the convergence of the tracking errors. The performance of the tracking strategy is evaluated by simulation, showing an acceptable performance.

Published in:

Electrical and Electronics Engineering, 2007. ICEEE 2007. 4th International Conference on

Date of Conference:

5-7 Sept. 2007

Need Help?

IEEE Advancing Technology for Humanity About IEEE Xplore | Contact | Help | Terms of Use | Nondiscrimination Policy | Site Map | Privacy & Opting Out of Cookies

A not-for-profit organization, IEEE is the world's largest professional association for the advancement of technology.
© Copyright 2014 IEEE - All rights reserved. Use of this web site signifies your agreement to the terms and conditions.