By Topic

Multi-Class Support Vector Machines for Large Data Sets via Minimum Enclosing Ball Clustering

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

4 Author(s)
Cervantes, J. ; Inst. Politecnico Nacional, Mexico City ; XiaoOu Li ; Wen Yu ; Bejarano, J.

Support vector machines (SVM) for binary classification have been developed in a broad field of applications. But normal SVM algorithms are not suitable for classification of large data sets because of high training complexity. This paper introduces a novel two-stage SVM classification approach for large data sets: minimum enclosing ball (MEB) clustering is introduced to select the training data from the original data set for the first stage SVM, and a de-clustering technique is then proposed to recover the training data for the second stage SVM. Then we extend binary SVM classification to case of multiclass. The novel two-stage multi-class SVM has distinctive advantages on dealing with huge data sets. Finally, we apply the proposed method on several benchmark problems, experimental results demonstrate that our approach have good classification accuracy while the training is significantly faster than other SVM classifiers.

Published in:

Electrical and Electronics Engineering, 2007. ICEEE 2007. 4th International Conference on

Date of Conference:

5-7 Sept. 2007