By Topic

Combination of Principal Component Analysis and Bayesian Network and its Application on Syndrome Classification for Chronic Gastritis in Traditional Chinese Medicine

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

4 Author(s)

In many applications, there are problems of small sample size and high dimensionality of data, for example, in traditional Chinese medicine syndrome classification of chronic gastritis. To attack these problems, this paper gives a method which combines data preprocessing and Bayesian networks. Firstly, data is divided into groups with hierarchical clustering. Then, principal component analysis technique is used to extract principal components of each group of the data. At last, the new principal components are used to train a Bayesian network classifier. Experiment results demonstrate that the method is feasible and effective.

Published in:

Natural Computation, 2007. ICNC 2007. Third International Conference on  (Volume:3 )

Date of Conference:

24-27 Aug. 2007