By Topic

Facial Complex Expression Recognition Based on Fuzzy Kernel Clustering and Support Vector Machines

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Hui Zhao ; Xinjiang University, China ; Zhiliang Wang ; Jihui Men

Present methods of facial expression recognition usually designate an expression image as one kind of six facial basic expressions. However, a facial expression usually is a complex expression that consists of several basic expressions. This paper proposes a facial complex expression recognition algorithm based on fuzzy kernel clustering and support vector machines. This algorithm designs the binary facial complex expression classification tree by using fuzzy kernel clustering algorithm, trains support vector machines at each node of the binary classification tree and describes the complexity of a facial expression according as the result of support vector machines classification. Experimental results indicate that the proposed algorithm generates higher accuracy for the JAFFE database and achieves better performance than 1-a-r SVMs. In addition, experimental results show that the result of the proposed method is more accord with practice than the result of traditional expression recognition methods.

Published in:

Third International Conference on Natural Computation (ICNC 2007)  (Volume:1 )

Date of Conference:

24-27 Aug. 2007