By Topic

Automated Fault Detection and Diagnosis in Mechanical Systems

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Huang, S.N. ; Nat. Univ. of Singapore, Singapore ; Tan, K.K. ; Lee, T.H.

In this work, a fault detection method is developed based on a neural network (NN) learning model. The robust observer is designed for monitoring fault, without NN learning, when the system of concern is operating in the normal healthy mode. By comparing appropriate states with their signatures, the fault diagnosis can be carried out and the NN learning is then triggered to identify the fault function.

Published in:

Systems, Man, and Cybernetics, Part C: Applications and Reviews, IEEE Transactions on  (Volume:37 ,  Issue: 6 )