Cart (Loading....) | Create Account
Close category search window
 

Robust Optimal Design of Unstable Valves

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
QingHui Yuan ; Minnesota Univ., Minneapolis ; Li, P.Y.

This paper is concerned with the application of robust control design concepts for the physical geometric design of electrohydraulic valves. Limitations of solenoid actuators have prevented single stage electrohydraulic valves which are simpler and more cost effective from being utilized in high flow rate and high bandwidth applications. Fluid flow force induced instability has been proposed as a means to alleviate the demand on the solenoid actuators. Previous research has demonstrated that simple changes in the valve geometry can be used to manipulate both the transient flow force as well as the steady flow force for this purpose. This paper considers the dimensional design of such ldquounstablerdquo valves to minimize the net steady flow force. The robust optimal design method, in which the design must be robust to uncertainties such as variations in operating pressure ranges and dynamic viscosity, etc., is proposed. By representing the original problem as a linear fractional transformation interconnection, the robust design problem is formulated into one of synthesizing an optimal controller for an appropriate static plant with a structured uncertainty. An algorithm for solving this design synthesis problem is proposed. A case study is conducted to compare the nominal optimal (without considering uncertainty) and the robust optimal designs. It is shown that viscosity effect is exclusively utilized in the nominal optimal design, whereas both the viscosity effect and the nonorifice flux effect are needed in the robust optimal design. The robust optimal design imposes smaller steady flow force on the spool than the nominal optimal design under perturbed situations. Based on the robust design method, an actual prototype design of the unstable valve has been developed.

Published in:

Control Systems Technology, IEEE Transactions on  (Volume:15 ,  Issue: 6 )

Date of Publication:

Nov. 2007

Need Help?


IEEE Advancing Technology for Humanity About IEEE Xplore | Contact | Help | Terms of Use | Nondiscrimination Policy | Site Map | Privacy & Opting Out of Cookies

A not-for-profit organization, IEEE is the world's largest professional association for the advancement of technology.
© Copyright 2014 IEEE - All rights reserved. Use of this web site signifies your agreement to the terms and conditions.