By Topic

Microplasma Trapping of Particles

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Jun Xue ; Tufts Univ., Medford ; Jeffrey A. Hopwood

The localized potential gradients created by a microplasma are capable of trapping and concentrating micro- and nanoparticles. In this paper, argon microplasma is generated within a 350-mum discharge gap formed within a microstrip transmission line. Melamine formaldehyde particles (1 mum) are released approximately 2 cm away from the microplasma. The microparticles are then negatively charged by stray electrons, electrostatically drawn toward the potential well of the microplasma, and trapped within the microplasma. The particles are observed to form Coulomb crystals. Time-of-flight experiments show that the particles are trapped in the microplasma by balancing the electrostatic force of the potential well against the molecular drag force. Pulsed plasma data show that the particles retain a net negative charge after the plasma has been extinguished, allowing detection and sorting by electrostatic methods.

Published in:

IEEE Transactions on Plasma Science  (Volume:35 ,  Issue: 5 )