By Topic

Pulsed Dielectric-Surface Flashover in an SF6 Environment

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

4 Author(s)
Krile, J.T. ; Texas Tech Univ., Lubbock ; Vela, R. ; Neuber, A. ; Krompholz, Hermann G.

A recently upgraded laser-triggered gas switch at Sandia National Laboratories has developed a failure mode that results in the breakdown spark tracking to the inside of the containment envelope. These breakdowns along the surface, or surface flashovers, degrade the performance of the overall switch, causing the switch to prefire in the successive shot. In the following, experimental results of pulsed surface flashover across different dielectric materials in SF6, primarily at atmospheric pressure, as well as flashover and volume breakdown in at pressures from 1.3 to 365.4 kPa are presented. In addition to fast voltage and current monitoring of the breakdown event, an increased emphasis was put on imaging the event as well as gathering optical emission spectra (~200-700 nm) from it. As much as possible, the small-scale experiments were designed to reproduce, at least partly, the conditions as they are found in the large 5-MV switch. An effort was made to determine what changes could be made to reduce the occurrence of surface flashovers, in addition to some broadly applicable conclusions on surface flashovers in an SF6 environment.

Published in:

Plasma Science, IEEE Transactions on  (Volume:35 ,  Issue: 5 )