By Topic

Mechanism of Blood Coagulation by Nonthermal Atmospheric Pressure Dielectric Barrier Discharge Plasma

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

10 Author(s)
Kalghatgi, S.U. ; Dept. of Electr. & Comput. Eng., Drexel Univ., Philadelphia, PA, USA ; Fridman, G. ; Cooper, M. ; Nagaraj, G.
more authors

Mechanisms of blood coagulation by direct contact of nonthermal atmospheric pressure dielectric barrier discharge (DBD) plasma are investigated. This paper shows that no significant changes occur in the pH or Ca2+ concentration of blood during discharge treatment. Thermal effects and electric field effects are also shown to be negligible. Investigating the hypothesis that the discharge treatment acts directly on blood protein factors involved in coagulation, we demonstrate aggregation of fibrinogen, an important coagulation factor, with no effect on albumin. We conclude that direct DBD treatment triggers selective natural mechanisms of blood coagulation.

Published in:

Plasma Science, IEEE Transactions on  (Volume:35 ,  Issue: 5 )