By Topic

Modeling of Si Etching Under Effects of Plasma Molding in Two-Frequency Capacitively Coupled Plasma in SF6/O2 for MEMS Fabrication

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)

We numerically investigated Si deep etching with several hundreds of micrometers such as that used in microelectromechanical system fabrication. This was carried out in SF6(83%)O2 at 300 mtorr in two-frequency capacitively coupled plasma using an extended vertically integrated computer-aided design for device processing (VicAddress). We estimated the local characteristics of plasma molding, including potential distribution and flux ion velocity distribution that are adjacent to an artificial microscale hole pattern. The sheath thickness is comparable to or even smaller than the size of the hole, and the sheath tends to wrap around the hole on a Si wafer. The distorted sheath field directly affects the incident flux and velocity distributions of ions. The angular distribution of SF5 + ions at the edge of the hole is strongly distorted from the normal incidence. That is, the ion flux becomes radially nonuniform in the vicinity of the hole pattern. The feature-profile evolution by radicals and ions under the presence of plasma molding indicates that the etching is enhanced particularly at the bottom corner due to the removal of the passivation (SiOxFy) layer by energetic ion, resulting in the suppression of anisotropy of the etch profile.

Published in:

Plasma Science, IEEE Transactions on  (Volume:35 ,  Issue: 5 )