Cart (Loading....) | Create Account
Close category search window
 

Conductivity Measurements of Femtosecond Laser–Plasma Filaments

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

6 Author(s)

Experiments are performed to characterize the electrical properties of plasma filaments that are generated by self- guided femtosecond laser pulses propagating in air. A single plasma filament passes through a high-voltage sphere pulsed at -100 kV to a grounded electrode, which serves as a current monitor. The experiments utilize moderate electric fields to probe the filament conductivity, thereby avoiding the strong perturbations caused by electric discharges. The measured filament current decreases as ~1/R2 as the separation R between the electrodes is increased up to 1.5 m. The pulselength of the filament current signal is 2 ns (full-width at half-maximum), but the time resolution is limited by the bandwidth of the oscilloscope. The typical plasma density in the conducting filament is 9 times 1015 cm-3, which is inferred from the conductivity measurements and the size of the optical filaments. Comparisons are made with mobility values derived from electron swarm data, where the mobility depends upon the applied electric field. The conductivity of the filament is measured as the laser pulselength is varied from 50 fs to 1.5 ps. We find that relatively long laser pulses (1 ps) produce filaments with the largest conductivity. A model is used to predict the longitudinal position where the plasma filament forms and is in reasonably good agreement with measurements.

Published in:

Plasma Science, IEEE Transactions on  (Volume:35 ,  Issue: 5 )

Date of Publication:

Oct. 2007

Need Help?


IEEE Advancing Technology for Humanity About IEEE Xplore | Contact | Help | Terms of Use | Nondiscrimination Policy | Site Map | Privacy & Opting Out of Cookies

A not-for-profit organization, IEEE is the world's largest professional association for the advancement of technology.
© Copyright 2014 IEEE - All rights reserved. Use of this web site signifies your agreement to the terms and conditions.