By Topic

Human Body Posture Classification by a Neural Fuzzy Network and Home Care System Application

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Chia-Feng Juang ; Nat. Chung Hsing Univ., Taichung ; Chia-Ming Chang

A new classification approach for human body postures based on a neural fuzzy network is proposed in this paper, and the approach is applied to detect emergencies that are caused by accidental falls. Four main body postures are used for posture classification, including standing, bending, sitting, and lying. After the human body is segmented from the background, the classification features are extracted from the silhouette. The body silhouette is projected onto horizontal and vertical axes, and then, a discrete Fourier transform is applied to each projected histogram. Magnitudes of significant Fourier transform coefficients together with the silhouette length-width ratio are used as features. The classifier is designed by a neural fuzzy network. The four postures can be classified with high accuracy according to experimental results. Classification results are also applicable to home care emergency detection of a person who suddenly falls and remains in the lying posture for a period of time due to experiments that were performed.

Published in:

Systems, Man and Cybernetics, Part A: Systems and Humans, IEEE Transactions on  (Volume:37 ,  Issue: 6 )