By Topic

Analytical Modelling of Voltage Balance Dynamics for a Flying Capacitor Multilevel Converter

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
B. P. McGrath ; Dept. of ECSE, Monash University, Wellington Road, Clayton, Vic, 3800, Australia. brendan.mcgrath@eng.monash.edu.au ; D. G. Holmes

This paper presents a strategy for the analytic determination of the natural voltage balancing dynamics of flying capacitor converters. The approach substitutes Double Fourier series representations of the PWM switching signals into a nonlinear dynamic circuit model of the converter. The result reduces to a linearised state space model that can be readily solved, with the Fourier solution coefficients defining the state space matrix terms. The solution can be readily developed for converters of any level, and allows rapid analytical investigation of the dynamic (and static) balancing behaviour over a wide range of conditions. Furthermore, the approach allows powerful strategies such as root locus to be used to investigate the converter's performance as a function of changes in parameters such as modulation index and load. The analysis approach has been fully verified by comparing it against experimental results on a low voltage prototype converter.

Published in:

2007 IEEE Power Electronics Specialists Conference

Date of Conference:

17-21 June 2007