By Topic

Algorithm Advancements for the Measurement of Single Cell Oxygen Consumption Rates

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

7 Author(s)
Molter, T.W. ; Dept. of Electr. Eng., Washington Univ., Seattle, WA, USA ; McQuaide, S.C. ; Meng Zhang ; Holl, M.R.
more authors

Advancements in methods and algorithms for the measurement of oxygen consumption rates of single cells is presented. In this system a low density of randomly seeded eukaryotic cells are sealed in an array of microwells etched in glass (zero to three cells per microwell). The decrease in oxygen concentration inside each microwell in the array is measured yielding the oxygen consumption rates of the cells trapped in the array. While fundamentally simple in concept, the system requires advanced algorithms for data collection and image processing. The data collection technique enabling the oxygen sensors in each microwell has been modified to increase speed and sensor precision. Utilizing internal triggering and an integrate-on-chip mode rather than external triggering and an off-chip accumulation mode improves sensor precision by 45% and increases collection speed by a factor of seven. Furthermore, an optimized sensor locator algorithm has reduced the time to process image data for a single oxygen measurement point five-fold. A new measurement technique involving custom image-processing algorithms has also been developed revealing the microwell volumes to be 0.54 nL on average with a 6% maximum spread from the mean. To demonstrate the utility of the system, we present an experiment that successfully measured the oxygen consumption rates of 1, 2 or 3 cells in nine individual microwells simultaneously.

Published in:

Automation Science and Engineering, 2007. CASE 2007. IEEE International Conference on

Date of Conference:

22-25 Sept. 2007