By Topic

Automation and yield of micron-scale self-assembly processes

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

5 Author(s)
Ehsan Saeedi ; Department of Electrical Engineering, University of Washington, USA. ehsan@u.washington.ed ; Samuel S. Kim ; James R. Etzkorn ; Dierdre R. Meldrum
more authors

We present the use of self-assembly to integrate a large number of free-standing microcomponents onto unconventional substrates. The microcomponents are batch fabricated separately from different semiconductor materials in potentially incompatible microfabrication processes and integrated onto unconventional substrates such as glass and plastic. These substrates offer a number of unique attributes as compared with silicon such as transparency, flexibility, and lower cost. Here, we provide an overview of the self-assembly process, describe how microcomponents that can participate in the self-assembly process can be mass-produced, and discuss initial self-assembly experimental results. Our results indicate that even with a very simple set-up, self-assembly yields as high as 97% for components as small as 100 mum are achievable, making the self-assembly technique immediately comparable with (or better than) the state-of-the-art robotic pick-and-place systems. We discuss various parameters that affect the yield of the self-assembly process and a possible automation scheme.

Published in:

2007 IEEE International Conference on Automation Science and Engineering

Date of Conference:

22-25 Sept. 2007