By Topic

Design Method for Numerical Function Generators Based on Polynomial Approximation for FPGA Implementation

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Shinobu Nagayama ; Hiroshima City University ; Tsutomu Sasao ; Jon T. Butler

This paper focuses on numerical function generators (NFGs) based on k-th order polynomial approximations. We show that increasing the polynomial order k reduces significantly the NFG's memory size. However, larger k requires more logic elements and multipliers. To quantify this tradeoff, we introduce the FPGA utilization measure, and then determine the optimum polynomial order k. Experimental results show that: 1) for low accuracies (up to 17 bits), 1st order polynomial approximations produce the most efficient implementations; and 2) for higher accuracies (18 to 24 bits), 2nd-order polynomial approximations produce the most efficient implementations.

Published in:

Digital System Design Architectures, Methods and Tools, 2007. DSD 2007. 10th Euromicro Conference on

Date of Conference:

29-31 Aug. 2007