By Topic

Towards benchmarks for knowledge systems and their implications for data engineering

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

1 Author(s)
Hayes-Roth, F. ; Cimflex Teknowledge Corp., Palo Alto, CA, USA

The author suggests a new focus on benchmarks for knowledge systems, following the lines of similar benchmarks in other computing fields. It is noted that knowledge systems differ from conventional systems in a key way, namely their ability to interpret and apply knowledge. This gives rise to a distinction between intrinsic measures concerned with engineering qualities and extrinsic measures relating to task productivity, and both warrant improved measurement techniques. Primary concerns within the extrinsic realm include advice quality, reasoning correctness, robustness, and solution efficiency. Intrinsic concerns, on the other hand, center on elegance of knowledge base design, modularity, and architecture. The author suggests criteria for good measures and benchmarks, and ways to satisfy these through the design of knowledge and key knowledge engineering costs and performance parameters. It is suggest that the focus on measuring knowledge systems should help clarify the technical relationships between knowledge engineering and data engineering

Published in:

Knowledge and Data Engineering, IEEE Transactions on  (Volume:1 ,  Issue: 1 )