By Topic

Simultaneous Switching Noise Suppression in Printed Circuit Boards Using a Compact 3-D Cascaded Electromagnetic-Bandgap Structure

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

4 Author(s)
Mu-Shui Zhang ; Xidian Univ., Xi'an ; Yu-Shan Li ; Chen Jia ; Li-Ping Li

In this paper, a deep bandgap behavior analysis of the vertical cascaded electromagnetic-bandgap (EBG) structure is made. It is shown that the vertical cascaded EBG structure can be decomposed into two EBG structures cascaded horizontally, one with the bigger patches and the other with the smaller patches. The design guidelines of the vertical cascaded EBG structure are drawn. Furthermore, the vertical cascade concept is extended to 3-D cascade for wideband simultaneous switching noise (SSN) suppression. The number of rows of patches for noise coupling reduction is investigated. Building SSN isolation walls along a printed circuit board for wideband electromagnetic-interference reduction and along sensitive devices for SSN isolation using a 3-D cascaded EBG structure is proposed. Simulations and measurements are performed to verify the SSN suppression. High performance is observed.

Published in:

IEEE Transactions on Microwave Theory and Techniques  (Volume:55 ,  Issue: 10 )