By Topic

Power Supply Rejection for RF Amplifiers: Theory and Measurements

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Stauth, J.T. ; California-Berkeley Univ., Berkeley ; Sanders, S.R.

Supply noise is a significant problem in RF systems where it can mix with RF signals, degrading signal/noise ratios and potentially causing violation of spectral masks. This paper presents an analysis of the supply rejection properties of RF amplifiers. We extend a conventional Volterra-series formulation to treat multiport systems and use it to describe the mixing products between power supply noise and the RF carrier. It is shown that a multiport Volterra formulation can be used to treat weak nonlinearities in the system and that the nonsymmetric cross terms accurately predict low-order mixing phenomenon. We demonstrate the validity of our hand analysis through the design and fabrication of a power amplifier in 180-nm CMOS, operating between 900 MHz-2.4 GHz with a maximum output power of 15 dBm. Spectral regrowth of single-tone and EDGE modulation waveforms is shown to match within 1-3 dB across frequency and input signal power. Importantly, this analysis provides insight into the circuit-level mechanisms for susceptibility to power supply noise and can help designers improve the power supply rejection ratio robustness of system-on-chip wireless blocks and transmitter architectures.

Published in:

Microwave Theory and Techniques, IEEE Transactions on  (Volume:55 ,  Issue: 10 )