By Topic

Back-to-Back Reflector Antennas With Reduced Moment of Inertia for Spacecraft Spinning Platforms

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Keyvan Bahadori ; California Univ., Los Angeles ; Yahya Rahmat-Samii

A back-to-back reflector antenna system with reduced moment of inertia is proposed in order to address the demanding problem of supporting large reflector antennas on spinning platforms. The configuration provides additional potential advantages, such as reducing the spinning speed by half for a given sampling rate when both back-to-back reflectors are utilized. Geometrical parameters of the reflector are determined such that the moment of inertia of the rotating system is reduced. It is shown that these back-to-back reflectors suffer from a high cross-pol level in the asymmetrical plane due to the large feed offset angle. Two different methods are explored to alleviate the high cross-pol level problem. In the first method, a sub reflector is utilized to minimize the cross-pol level by satisfying the Mizugutchi condition. In the second method, a tri-mode matched feed horn is suggested to achieve a similar result. The suppressed cross-pol level puts forward the gravitationally balanced back-to-back reflector antenna systems as a potential candidate for future spacecraft antennas on spinning platforms.

Published in:

IEEE Transactions on Antennas and Propagation  (Volume:55 ,  Issue: 10 )