By Topic

Cost-Based Anticipatory Action Selection for Human–Robot Fluency

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Hoffman, G. ; MIT Media Lab., Massachusetts Inst. of Technol., Cambridge, MA, USA ; Breazeal, C.

A crucial skill for fluent action meshing in human team activity is a learned and calculated selection of anticipatory actions. We believe that the same holds for robotic teammates, if they are to perform in a similarly fluent manner with their human counterparts. In this work, we describe a model for human-robot joint action, and propose an adaptive action selection mechanism for a robotic teammate, which makes anticipatory decisions based on the confidence of their validity and their relative risk. We conduct an analysis of our method, predicting an improvement in task efficiency compared to a purely reactive process. We then present results from a study involving untrained human subjects working with a simulated version of a robot using our system. We show a significant improvement in best-case task efficiency when compared to a group of users working with a reactive agent, as well as a significant difference in the perceived commitment of the robot to the team and its contribution to the team's fluency and success. By way of explanation, we raise a number of fluency metric hypotheses, and evaluate their significance between the two study conditions.

Published in:

Robotics, IEEE Transactions on  (Volume:23 ,  Issue: 5 )