By Topic

Global Path-Planning for Constrained and Optimal Visual Servoing

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Graziano Chesi ; Hong Kong Univ., Hong Kong ; Y. S. Hung

Visual servoing consists of steering a robot from an initial to a desired location by exploiting the information provided by visual sensors. This paper deals with the problem of realizing visual servoing for robot manipulators taking into account constraints such as visibility, workspace (that is obstacle avoidance), and joint constraints, while minimizing a cost function such as spanned image area, trajectory length, and curvature. To solve this problem, a new path-planning scheme is proposed. First, a robust object reconstruction is computed from visual measurements which allows one to obtain feasible image trajectories. Second, the rotation path is parameterized through an extension of the Euler parameters that yields an equivalent expression of the rotation matrix as a quadratic function of unconstrained variables, hence, largely simplifying standard parameterizations which involve transcendental functions. Then, polynomials of arbitrary degree are used to complete the parametrization and formulate the desired constraints and costs as a general optimization problem. The optimal trajectory is followed by tracking the image trajectory with an IBVS controller combined with repulsive potential fields in order to fulfill the constraints in real conditions.

Published in:

IEEE Transactions on Robotics  (Volume:23 ,  Issue: 5 )