By Topic

Motion compensation for a frequency stepped radar

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Prodi, F. ; SELEX-Sistemi Integrati, Rome ; Tilli, E.

A few hundred MHZ synthetic bandwidth requires the transmission of many (~100) frequency stepped pulses when a small instantaneous bandwidth (<10 MHz) is available. The actual trend in radar imaging is towards wide instantaneous bandwidth (>50 MHz) thanks to improved technology. However the need of retrofit of narrow instantaneous bandwidth to HRR (high range resolution) seems to be still cost effective in the industrial context. In this case the processing time, combined with a large synthetic bandwidth, requires a proper motion compensation of radial target velocity and acceleration. Target kinematics parameters are estimated by minimization of a like-autocorrelation cost function; this technique is capable of detecting minima of aliasing created by uncompensated motion condition. Accuracies are estimated by Monte Carlo simulation and compared to those achievable by entropy and contrast based techniques.

Published in:

Waveform Diversity and Design Conference, 2007. International

Date of Conference:

4-8 June 2007