Cart (Loading....) | Create Account
Close category search window
 

Fast Nearest Neighbor Condensation for Large Data Sets Classification

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

1 Author(s)
Angiulli, F. ; Univ. della Calabria, Rende

This work has two main objectives, namely, to introduce a novel algorithm, called the fast condensed nearest neighbor (FCNN) rule, for computing a training-set-consistent subset for the nearest neighbor decision rule and to show that condensation algorithms for the nearest neighbor rule can be applied to huge collections of data. The FCNN rule has some interesting properties: it is order independent, its worst-case time complexity is quadratic but often with a small constant prefactor, and it is likely to select points very close to the decision boundary. Furthermore, its structure allows for the triangle inequality to be effectively exploited to reduce the computational effort. The FCNN rule outperformed even here-enhanced variants of existing competence preservation methods both in terms of learning speed and learning scaling behavior and, often, in terms of the size of the model while it guaranteed the same prediction accuracy. Furthermore, it was three orders of magnitude faster than hybrid instance-based learning algorithms on the MNIST and Massachusetts Institute of Technology (MIT) Face databases and computed a model of accuracy comparable to that of methods incorporating a noise-filtering pass.

Published in:

Knowledge and Data Engineering, IEEE Transactions on  (Volume:19 ,  Issue: 11 )

Date of Publication:

Nov. 2007

Need Help?


IEEE Advancing Technology for Humanity About IEEE Xplore | Contact | Help | Terms of Use | Nondiscrimination Policy | Site Map | Privacy & Opting Out of Cookies

A not-for-profit organization, IEEE is the world's largest professional association for the advancement of technology.
© Copyright 2014 IEEE - All rights reserved. Use of this web site signifies your agreement to the terms and conditions.