Cart (Loading....) | Create Account
Close category search window

Monolithic integrated coherent receiver on InP substrate

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

6 Author(s)
Takeuchi, H. ; NTT Opto-Electron. Lab., Kanagawa, Japan ; Kasaya, K. ; Kondo, Y. ; Yasaka, H.
more authors

The fabrication of a monolithic integrated coherent receiver with a wavelength-tunable DFB laser as local oscillator, a 3-dB waveguide directional coupler for mixing, and p-i-n photodiodes for detection is discussed. Optical heterodyne detection with a clear beat signal was experimentally observed using this monolithic integrated coherent receiver. Since an n-type substrate was used in this device, the two p-i-n photodiodes were not implemented in a balanced mixer configuration. Balanced mixing might be possible if the same structure were fabricated on a semi-insulating substrate. The results obtained suggest the possibility of applying this type of monolithic integrated coherent receiver to optical communication systems.<>

Published in:

Photonics Technology Letters, IEEE  (Volume:1 ,  Issue: 11 )

Date of Publication:

Nov. 1989

Need Help?

IEEE Advancing Technology for Humanity About IEEE Xplore | Contact | Help | Terms of Use | Nondiscrimination Policy | Site Map | Privacy & Opting Out of Cookies

A not-for-profit organization, IEEE is the world's largest professional association for the advancement of technology.
© Copyright 2014 IEEE - All rights reserved. Use of this web site signifies your agreement to the terms and conditions.