By Topic

Foreground Detection Based on Real-time Background Modeling and Robust Subtraction

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

6 Author(s)
Shengshu Wang ; Univ. of Electron. Sci. & Technol. of China, Chengdu ; Zhi Zhong ; Pei Chen ; Gewen Kang
more authors

This paper presents a robust approach for detecting moving objects from a static background scene that contains slow illumination changes, physical changes and micro- movements. First, we propose a new algorithm for background modeling that adapts to slow illumination and physical changes. This algorithm which is based on pixel state computation and background pixel state decision does not need such training sequences excluding moving objects. Second, we develop an efficient background subtraction algorithm that is able to cope with micro-movement of the background scene. This is done by calculating the similarity between the incoming pixel and its neighborhood pixels in the background model. Finally, we applied this robust approach to some video surveillance sequences of both indoor and outdoor scenes. The results demonstrate the effectiveness of our approach.

Published in:

Automation and Logistics, 2007 IEEE International Conference on

Date of Conference:

18-21 Aug. 2007