By Topic

A Comparison of Collaborative-Filtering Recommendation Algorithms for E-commerce

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Zan Huang ; Pennsylvania State Univ, James City ; Daniel Zeng ; Hsinchun Chen

Collaborative filtering is one of the most widely adopted and successful recommendation approaches. Unlike approaches based on intrinsic consumer and product characteristics, CF characterizes consumers and products implicitly by their previous interactions. The simplest example is to recommend the most popular products to all consumers. Researchers are advancing CF technologies in such areas as algorithm design, human- computer interaction design, consumer incentive analysis, and privacy protection.

Published in:

Intelligent Systems, IEEE  (Volume:22 ,  Issue: 5 )