By Topic

Integrating Semantic Knowledge into Text Similarity and Information Retrieval

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Christof Muller ; Darmstadt University of Technology, Germany ; Iryna Gurevych ; Max Muhlhauser

This paper studies the influence of lexical semantic knowledge upon two related tasks: ad-hoc information retrieval and text similarity. For this purpose, we compare the performance of two algorithms: (i) using semantic relatedness, and (ii) using a conventional extended Boolean model [12]. For the evaluation, we use two different test collections in the German language: (i) GIRT [5] for the information retrieval task, and (ii) a collection of descriptions of professions built to evaluate a system for electronic career guidance in the information retrieval and text similarity task. We found that integrating lexical semantic knowledge improves performance for both tasks. On the GIRT corpus, the performance is improved only for short queries. The performance on the collection of professional descriptions is improved, but crucially depends on the preprocessing of natural language essays employed as topics.

Published in:

International Conference on Semantic Computing (ICSC 2007)

Date of Conference:

17-19 Sept. 2007