By Topic

A framework to design and solve Markov Decision Well-formed Net models

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

4 Author(s)
Beccuti, M. ; Univ. del Piemonte Orientale, Alessandria ; Codetta-Raiteri, D. ; Franceschinis, G. ; Haddad, S.

The Markov decision process (MDP) (M.L. Puterman, 2005) formalism is widely used for modeling systems which exhibit both non deterministic and probabilistic behaviors (e.g. distributed systems, resource management systems, ...). Unfortunately, if the system is particularly complex then its modeling at the MDP level may be very hard; so in (M. Beccuti et al., 2007) a higher-level formalism called Markov decision well-formed net (MDWN) was proposed. The MDWN allows to describe the system in terms of its components and their interactions, while the MDP describes directly the state space and the state transitions. The MDWN model is more compact and readable: in particular, it is possible to define a complex non deterministic or probabilistic behavior as a composition of simpler non deterministic or probabilistic steps. In the MDWN formalism, the probabilistic behavior of the system is clearly distinct from the non deterministic one; actually they are designed as two separate Petri nets (PN): the probabilistic PN (Npr) and the non deterministic PN (Nnd).

Published in:

Quantitative Evaluation of Systems, 2007. QEST 2007. Fourth International Conference on the

Date of Conference:

17-19 Sept. 2007