By Topic

Field and service applications - An infrastructure-free automated guided vehicle based on computer vision - An Effort to Make an Industrial Robot Vehicle that Can Operate without Supporting Infrastructure

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

4 Author(s)
Alonso Kelly ; Carnegoe Mellon Univ., Pittsburgh ; Bryan Nagy ; David Stager ; Ranjith Unnikrishnan

Automated guided vehicles (AGVs) have been operating effectively in factories for decades. These vehicles have successfully used strategies of deliberately structuring the environment and adapting the process to the automation. The potential of computer vision technology to increase the intelligence and adaptability of AGVs is largely unexploited in contemporary commercially available vehicles. We developed an infrastructure-free AGV that uses four distinct vision systems. Three of them exploit naturally occurring visual cues instead of relying on infrastructure. When coupled with a highly capable trajectory generation algorithm, the system produces four visual servo controllers that guide the vehicle continuously in several contexts. These contexts range from gross motion in the facility to precision operations for lifting and mating parts racks and removing them from semi-trailers. To our knowledge, this is the first instance of an AGV that has operated successfully in a relevant environment for an extended period of time without relying on any infrastructure.

Published in:

IEEE Robotics & Automation Magazine  (Volume:14 ,  Issue: 3 )