By Topic

A Rapid and Low-Cost Procedure for Fabrication of Glass Microfluidic Devices

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

6 Author(s)
Qiang Chen ; Chinese Acad. of Sci., Shanghai ; Gang Li ; Qing-Hui Jin ; Jian-Long Zhao
more authors

In this paper, we present a simple, rapid, and low-cost procedure for fabricating glass microfluidic chips. This procedure uses commercially available microscopic slides as substrates and a thin layer of AZ 4620 positive photoresist (PR) as an etch mask for fabricating glass microfluidic components, rather than using expensive quartz glasses or Pyrex glasses as substrates and depositing an expensive metal or polysilicon/amorphous silicon layer as etch masks in conventional method. A long hard-baking process is proposed to realize the durable PR mask capable of withstanding a long etching process. In order to remove precipitated particles generated during the etching process, a new recipe of buffered oxide etching with addition of 20% HCl is also reported. A smooth surface microchannel with a depth of more than 110 mum is achieved after 2 h of etching. Meanwhile, a simple, fast, but reliable bonding process based on UV-curable glue has been developed which takes only 10 min to accomplish the efficient sealing of glass chips. The result shows that a high bonding yield (~ 100%) can be easily achieved without the requirement of clean room facilities and programmed high-temperature furnaces. The presented simple fabrication process is suitable for fast prototyping and manufacturing disposable microfluidic devices.

Published in:

Microelectromechanical Systems, Journal of  (Volume:16 ,  Issue: 5 )