By Topic

Estimation of Stiction Force From Electrical and Optical Measurements on Cantilever Beams

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Souvik Basu ; Indian Inst. of Technol. Madras, Chennai ; Anil Prabhakar ; Enakshi Bhattacharya

In this paper, we estimate the stiction force from electrical (current-voltage) measurements on surface micromachined polysilicon cantilever beams. A bias voltage was applied between the beam and the substrate. At the pull-in voltage, the beam collapsed to the substrate and the current rose rapidly from zero. Similarly, at the pull-out voltage during bias sweep back, the current dropped rapidly to zero when the contact between the beam and the substrate was broken. An analytic model for the stiction force was developed in terms of the pull-in and pull-out voltages and was used to estimate a stiction force of about 70 nN from the measured electrical characteristics. This method of characterization is suitable for use in packaged devices. An analytic model was developed to estimate stiction force from optical surface-profile measurements of the curvature of long collapsed cantilever beams in a cantilever-beam array, in the absence of any electrostatic actuation. The force per unit length of about 14 nN/m thus obtained was used to compare the effects of surface roughness on stiction.

Published in:

Journal of Microelectromechanical Systems  (Volume:16 ,  Issue: 5 )