By Topic

Sub-Micro-Gravity In-Plane Accelerometers With Reduced Capacitive Gaps and Extra Seismic Mass

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Abdolvand, R. ; Georgia Inst. of Technol., Atlanta ; Amini, B.V. ; Ayazi, F.

This paper presents a robust fabrication technique for manufacturing ultrasensitive micromechanical capacitive accelerometers in thick silicon-on-insulator substrates. The inertial mass of the sensor is significantly increased by keeping the full thickness of the handle layer attached to the top layer proof mass. High-aspect-ratio capacitive sense gaps are fabricated by depositing a layer of polysilicon on the sidewalls of low aspect- ratio trenches etched in silicon. Using this method, requirements on trench etching are relaxed, whereas the performance is preserved through the gap reduction technique. Therefore, this process flow can potentially enable accelerometers with capacitive gap aspect-ratio values of greater than 40:1, not easily realizable using conventional dry etching equipment. Also, no wet-etching step is involved in this process which in turn facilitates the fabrication of very sensitive motion sensors that utilize very compliant mechanical structures. Sub-micro-gravity in-plane accelerometers are fabricated and tested with measured sensitivity of 35 pF/g, bias instability of 8 mug, and footprint of <0.5 cm2.

Published in:

Microelectromechanical Systems, Journal of  (Volume:16 ,  Issue: 5 )