By Topic

On the Application of a Modified Self-Organizing Neural Network to Estimate Stereo Disparity

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Y. V. Venkatesh ; Nat. Univ. of Singapore, Singapore ; S. Kumar Raja ; A. Jaya Kumar

We propose a modified self-organizing neural network to estimate the disparity map from a stereo pair of images. Novelty consists of the network architecture and of dispensing with the standard assumption of epipolar geometry. Quite distinct from the existing algorithms which, typically, involve area- and/or feature-matching, the network is first initialized to the right image, and then deformed until it is transformed into the left image, or vice versa, this deformation itself being the measure of disparity. Illustrative examples include two classes of stereo pairs: synthetic and natural (including random-dot stereograms and wire frames) and distorted. The latter has one of the following special characteristics: one image is blurred, one image is of a different size, there are salient features like discontinuous depth values at boundaries and surface wrinkles, and there exist occluded and half-occluded regions. While these examples serve, in general, to demonstrate that the technique performs better than many existing algorithms, the above-mentioned stereo pairs (in particular, the last two) bring out some of its limitations, thereby serving as possible motivation for further work.

Published in:

IEEE Transactions on Image Processing  (Volume:16 ,  Issue: 11 )