By Topic

Hidden Markov Model-Based Weighted Likelihood Discriminant for 2-D Shape Classification

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Ninad Thakoor ; Univ. of Texas at Arlington, Arlington ; Jean Gao ; Sungyong Jung

The goal of this paper is to present a weighted likelihood discriminant for minimum error shape classification. Different from traditional maximum likelihood (ML) methods, in which classification is based on probabilities from independent individual class models as is the case for general hidden Markov model (HMM) methods, proposed method utilizes information from all classes to minimize classification error. The proposed approach uses a HMM for shape curvature as its 2-D shape descriptor. We introduce a weighted likelihood discriminant function and present a minimum classification error strategy based on generalized probabilistic descent method. We show comparative results obtained with our approach and classic ML classification with various HMM topologies alongside Fourier descriptor and Zernike moments-based support vector machine classification for a variety of shapes.

Published in:

IEEE Transactions on Image Processing  (Volume:16 ,  Issue: 11 )