By Topic

A De-Interlacing Algorithm Using Markov Random Field Model

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Min Li ; California San Diego Univ., La Jolla ; Truong Nguyen

In this paper, a motion-compensated de-interlacing algorithm using the Markov random field (MRF) model is proposed. The de-interlacing problem is formulated as a maximum a posteriori (MAP) MRF problem. The MAP solution is the one that minimizes an energy function, which imposes discontinuity-adaptive smoothness (DAS) spatial constraint on the de-interlaced frame. The edge direction information, which is used to formulate the DAS constraint, is implicitly indicated by weight vectors (weights for 16 digitized directions). Generally, large weights are assigned to along-edge directions and relatively small weights are assigned to across-edge directions. As a local statistical-based method, the proposed weighting method should be more robust than traditional edge-directed interpolation methods in deciding local edge directions. The proposed algorithm is implemented by an iterative optimization process, which guarantees convergence. However, a global optimal solution is not guaranteed due to computational complexity concern. Simulation results compare the proposed algorithm to other motion compensated de-interlacing algorithms. Significant improvements of de-interlaced edges are observed.

Published in:

Image Processing, IEEE Transactions on  (Volume:16 ,  Issue: 11 )