By Topic

Morphological Component Analysis: An Adaptive Thresholding Strategy

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

5 Author(s)

In a recent paper, a method called morphological component analysis (MCA) has been proposed to separate the texture from the natural part in images. MCA relies on an iterative thresholding algorithm, using a threshold which decreases linearly towards zero along the iterations. This paper shows how the MCA convergence can be drastically improved using the mutual incoherence of the dictionaries associated to the different components. This modified MCA algorithm is then compared to basis pursuit, and experiments show that MCA and BP solutions are similar in terms of sparsity, as measured by the lscr1 norm, but MCA is much faster and gives us the possibility of handling large scale data sets.

Published in:

IEEE Transactions on Image Processing  (Volume:16 ,  Issue: 11 )